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Abstract—Various studies in crystal elasticity suggest that the strain energy should, in some cases, be
regarded as multi-valued, with branches related in a rather definite way. My purpose is to elaborate this.

L. INTRODUCTION

Although expositions of elasticity theory ignore the matter, the strain energy function for some
crystals is multi-valued. For example, a quartz crystal can contain Dauphiné twins. The strain
energy functions for the twins differ from each other by a simple symmetry transformation.
Application of a shear stress to the crystal generally produces different deformations and
energies in the two twins and, if the shear stress is large enough, one type of twin will convert
to the other. After removal of the load, the crystal is no longer twinned and there need be no
net deformation of the parts. Elementary theory for this, based on linear elasticity theory is
presented by Thomas and Wooster[1] and Wooster[2]. Practically, this has been used to
convert defective (twinned) quartz crystals to good ones. Similar tricks have been employed on
other kinds of crystals. Using ideas deriving from molecular theory, Parry[3] analyzed some
kinds of phase transitions which again involve multi-valued strain energy functions. At least
some of the known examples fit a common pattern. My purpose is to explain what this is. To
some degree, motivations for considering it are also included in discussions like those of Cohen
et al.[4].

2. THEPATTERN

As usual, we consider, as a reference configuration, an homogeneous configuration of
minimum energy of a crystal, what is commonly called a natural state. Associated with this is a
set of lattice vectors E, (a =1, 2, 3) describing the periodicity which is characteristic of
crystals. Given these, we can calculate a maximal point group P. It contains every orthogonal
transformation Q which satisfies an equation of the form

QE. = 2| mabEb’ n

where the m,? are integers such that
det. [mSt|==1. V)]

In particular, P will always contain Q=1 and Q=~1 and, from the classical theory of
crystallographic groups, it is known that P is always a finite group. We think of applying, as
point transformations, all such transformations to the atoms in the crystal. If, to within a trivial
translation, all map the atoms to positions previously occupied by identical atoms, we use P as
the basic invariance group for linear theories, including linear elasticity theory. Commonly, the
same group is used for nonlinear theories of finite deformation. Current thinking is that this is
only appropriate for relatively small deformations, and that, for larger deformations, the
invariance group should be enlarged to include non-orthogonal transformations. Studies such as
that of Parry[5)] give some idea of how large deformation can be before we need to consider the
latter complication. We ignore this kind of complication, which means that we restrict our
attention to theory appropriate for small but finite deformations. With the provisos indicated,
present experience indicates that it is reasonable to consider the strain energy as single valued,
with P adequately describing material symmetry.
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Another kind of situation arises if not every Q € P maps atoms into positions previously
occupied by identical atoms, apart from a trivial translation. Generally, a subset will and it is
easy to show that these will form a (proper) subgroup P,. The standard practice is then to take
P, as the basic invariance group, in considering constitutive equations. As I see it, this is better
interpreted as referring to one branch of the constitutive equation, giving the strain energy per
unit reference volume W as a function of the deformation gradient F or after accounting for
Galilean invariance, as a function of C = FTF. Standard practice is then summarized in the
equation

W=W(C)= Wx(QTCQ): QEP,. 3)

As is obvious, and well known, any such constitutive equation is invariant under the central
inversion @ = — 1. Thus, if P, is obtained from P just by deletion of this transformation, W,
will be invariant under P and, effectively, we are back to the previous situation, insofar as
elasticity theory is concerned.

Now consider any Q = Q which is in P, but not in P,. Conceptually, it will map atoms in the
reference configuration to positions which an observer will see as distinguishable from what
they were previously. Generally, if Q# — 1, we expect the two configurations to exhibit slightly
different elastic response to a given deformation. In trying to give objective rules for identifying
particular elastic moduli, we commonly rely on specifications of lattice vectors, their lengths,
angles between them, etc. Particularly if we interpret “objective” as mirror imaging, lattice
vectors related by P should be regarded as equivalent, from this objective point of view.
Observers might agree that our different configurations are different from each other, but be
hard pressed, at least, to give any objective rule to tell which is which. In itself, this gives a
reason for considering the set as a unit rather than the individual configurations. Elementary
symmetry considerations, such as are used in the analysis presented by Thomas and
Wooster[1], then lead to the conclusiont that we can get the second strain energy function W,
from the first, as indicated by

WAC) = W(QTCQ). @

Generally, W, and W, are different functions. However, in the original reference configuration,
where C =1, we have, since §7Q0 =1,

Wa(1) = Wi(1). &)

If it were otherwise, one of these configurations would be less stable than the other,
contradicting the spirit of objectivity, at least. Tacitly, we have assumed that the relevant
domain of W, is invariant under P, so (4) makes sense. In turn, this means that (4) can be
inverted to read

W(C) = W(QCQ™). 6)

Also, we can define a group P, conjugate to Py, consisting of the orthogonal transformations Q,
given by
Q.= 0Q,Q7, Q P, ]
From (3) and (4), we then have
Wx(Q:"CQ) = Wi(Q"Q."CQ,Q)

= W,(Q,"QC0Q)

= Wi(Q"CQ) ®)

= W2(C))

tActually, this represents an assumption. If, say, one crystal is a minor image of another then, reasonably, applying 2
deformation to one and the mirror imaged deformation to the other will give rise to the same value of the energy stored.
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so P, serves as the invariance group for W,. In brief, the two are on equal footing, it makes no
difference which we regard as the first. By similar reasoning, we could also write (4) as

W(C) = W(QTCQ), )
provided @ and Q are related as indicated by
0=:4Q, QEP. (10)

It may happen, and does in the case of the Dauphiné twinning in quartz, that every Q€ P is
either in P, or included in the set described by (10). Then, we get just the two branches
indicated. The physical experience is that we can induce a crystal to shift from one branch to
the other, by applying suitable loadings. For the obvious reason, the two kinds of configurations
are called twins by experts on crystal behavior. In passing from one twin to another, some
atoms must jump to new locations, a process called “shuffling”. Differences between shuffle
transformations and martensitic transformations, which do not involve shuffling, are discussed
in some detail by Cohen et al.[4], for example.

If P contains some element é not in P, and not accounted for in (10), we can use it to define
a third branch, viz.

wy0) = wi(Gcd), etc. (11

Proceeding in this way until we use up all transformations in P, we must get a finite number of
branches, since P is a finite group. Subgroups of point groups, like our P, are also counted as
point groups and all possible point groups are characterized, in the theory of crystallographic
groups. Considered as abstract groups, there are 32 point groups. For elasticity theory, we can
restrict our attention to those which contain Q = — 1, there being 11 of these. Information on
these groups, on possible sets of lattice vectors associated with them, etc. is given by
Seitz[6, 7], for example. Clearly, one could use such information to classify all of the possible
kinds of branching, but I will not pursue this,

In the above analysis, it is not really necessary that the reference configuration be taken as a
natural state. The assumption is made more to enable us to draw upon experience with classical
linear theory, familiar considerations of crystal symmetry, etc. What is important is that the
different atomic configurations be related as indicated to the one taken as reference. I am not
sure that I fully understand the implications of this, so will ignore such possibilities, here.

3. REMARKS

We again consider the configuration which originally served as a reference. Suppose that we
were to pick another reference configuration, obtained by applying a finite rotation R to this.
Employing standard reasoning in the theory of change of reference configurations, introduced
by Gibbs[8], we get a different strain energy function W,(C), related to the former by

W,(C) = W\(RTCR). (11
From (4), it is clear that, if we take
R=QorR=-0, (12)
whichever has the positive determinant, we will have
Wi(CO) = WiC). (13)
Thus, the configurations associated with W, and W, are elastically equivalent, although other
types of experiments might discern the difference. In this sense, the difference between having

a single-valued or multi-valued energy function is somewhat minor. For example, it is a very
familiar fact that if we subject a crystal to an hydrostatic pressure, we will get a change of
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volume which is independent of the choice of R. Thus W, and W, will yield the same
pressure-volume curve, in such circumstances. For this reason, a thermodynamicist is likely to
conclude that our different configurations are in the same thermodynamic phase. A transition
shifting us from one branch to another could be regarded as a phase transformation, by one
interpretation of the terminology used by Cohen et al.[4], and it does have some of the
earmarks of a phase transition, at least. I don’t wish to make an issue of this matter of jargon.

Of particuiar interest is the response to loadings or changes in temperature of bodies
containing two or more of our configurations, variations on the theme in the work reported by
Thomas and Wooster[1]. Such experience suggests that elasticity theory can have only limited
success in predicting when we will have a shift from one branch to another. This is not
surprising since such theory is too crude to enable any description of the shuffling motions
involved, We tolerate the yield conditions which are tacked on to predict the onset of plasticity
and, it seems, something like this must be done for these phenomena. In this respect, a more
refined theory, accounting for these subtler motions seems to be more promising, as is
discussed by Rivlin[9]. Such alternatives seem to be worth exploring. Here, one is getting closer
to molecular theory and, perhaps, one should go all the way.

In at least some cases, there are indications that nature seems to prefer that these composite
bodies be put together so that a change in temperature or hydrostatic pressure will not produce
shear stresses in the parts. With (13), this is elastically equivalent to forming a body from 2
material with a single-valued energy function by joining parts, rotated relative to each other, in
such a way as to avoid shear stresses. Some elementary theory of this is given by Ericksen[10],
and some of James'[11] theory of twinning, trilling, etc. can be adapted, rather easily. James
encounters some difficulty with the theory of loaded bodies, when he tries to use reasoning
analogous to that used for unloaded crystals, For the latter, his assumptions are in good accord
with those which have been used by crystallographers, etc. From the treatment of shear loading
of quartz presented by Thomas and Wooster{1], it is pretty clear that no such analogy applies.
Thus, as is made rather clear by James, one has to adopt less restrictive assumptions to treat
loaded bodies, in general. I am not so sure that there are not similar problems with unloaded
bodies, in general. At least some of those knowledgeable about shuffie transformations think it
can be important to account for interfacial energy associated with surfaces where two parts
meet, as is mentioned by Cohen et al.[4], for example, and the aforementioned authors don't
allow for this. If so, this would modify the usual jump conditions assumed for the stress tensor,
among other things. Thus, the elasticity theory which seems pertinent for these composite
bodies is roughed out, but hardly finished, and it seems to me worthwhile to put it in better
order. Of course, there are similarities between these problems and those encountered in other
composite bodies, for example those considered in sandwich construction so, basically, it is the
transition theory which needs improvement.

Acknowledgement—This work was supported by National Science Foundation grant CME 79 11112,

REFERENCES

. L. A. Thomas and W. A. Wooster, Proc. Roy. Soc. A208, 43 (1951),

. W. A. Wooster, Nature 159, 94 (1947).

. G. P. Parry, Int. J. Solids Structures 17, 361 (1981).

. M. Cohen, G. B. Olson and P. C. Clapp, On the classification of displacive phase transformations. In: Proc. Int. Conf.
on Manrtensitic Transformation, ICOMAT. Dept. of Materials Sci. and Engr. MIT, Cambridge, Mass. (1979).

5. G. P. Parry, Math. Proc. Camb, Phil. Soc. 30, 189 (1976).

6. F. Seitz, Z. Kristallogr., Kristaligeom., Kristaliphys., Kristalichem. 88, 433 (1934); 90, 289 (1935); 91, 336 (1935) and 94,

100 (1936).

7. F. Seitz, Ann. Math. 37, 17 (1936).

8. J. W. Gibbs, Trans. Conn. Acad. 3, 343 (1878).

9. R. S. Rivlin, Some thoughts on material stability. To appear in J. Elasticity.

0. J. L. Ericksen, Theory of stress-free joints. To appear in J. Elasticity.

1. R. D. James, Finite deformation by mechanical twinning. To appear in Arch. Ration. Mech. Analysis.

I oD DD s

-



